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Abstract. Bramson recently showed how the interaction of the gravitational field with a 
massive spinor field could be cast into a conformally invariant form by the addition of a 
scalar field which is constant in a family of canonical gauges. Here Bramson's treatment is 
extended to include the interaction of gravitation with matter in general and it is shown that 
the dependence of particle masses on the scalar field 4, m = m&, assumed by Bramson, is in 
fact a necessary one. In addition, the equations of motion of test particle in a general gauge 
are derived. 

1. Introduction 

Bramson (1974) showed that the equations governing the interaction of the gravita- 
tional field with a massive spinor field could be cast into a form which is invariant under 
the conformal transformation 

gi, = e"g:,, (1) 

where (+ is an arbitrary space-time function. Central to this result was the introduction 
of a conformally invariant scalar field which transforms under equation (1) according to 

(2) 4 = 41 e-ff/2 

m = mo4. (3) 
In the particular gauge in which 4 is constant, Bramson's equations reduce to the 
Einstein form. The purpose of this paper is to show the necessity for equation (3) for 
matter in general. 

and the assumption that particle masses are of the form 

2. Conformally invariant Lagrangian 

To represent the general case of gravitation interactingwith matter we adopt the action 

I =  I &$'I? - & 5 , k ~ $ ~  +$~4~-87rL, , , (+~ ,  h(+, 4 ) ) F g d 4 x ,  (4) 
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the free field terms being those already used by Bramson. The last term in the above 
action is a general matter term depending on matter fields qA, a tetrad field (necessi- 
tated by the inclusion of spinor variables), and the scalar field 4. The metric and tetrad 
fields are related by 

( 5 )  (a  ) 
gij = h(a)ih i. 

The reader is referred to Weinberg (1972, p 370) for a description of the tetrad 
formalism. Variation of Z with respect to h(,)i and 4 with the usual conditions on the 
boundary of integration gives the field equations 

1 4  
&42Gij+f4,i4,1 -h4,kVkg, +:4(Wgij-4;ij)+ija4 gij =-8rTj, (6)  

04+:R4+ff43=-87TS, (7) 

where the stress energy tensor qj and the source term for the scalar field are defined by 

It is presumed that in the limit of a large number of interacting and non-interacting 
fields, Ti’ and S become the corresponding quantities for matter in bulk. 

3. Coordinate and conformal invariance identities 

The free field integral in equation (4) is invariant under coordinate and conformal 
transformations. Thus, for the theory derived from equation (4) to be covariant and 
conformally invariant, the same is demanded of the matter part of the action 
IL ,Ggd4x.  This leads to the two sets of identities 

4. Quatiom of motion of a test partide 

The above identities may be used to derive the equations of motion of a test particle and 
the dependence of mass upon 4. We initially consider a body of finite extent tracing out 
a world tube in space-time. A test particle is taken to be the limiting case of the world 
tube contracting to a world line. We represent the body by a concentration of energy 
with negligible stress, so that 

T.. 11 =pc2V,V. I’ (1  1) 

where p is the density of matter within the world tube and Vi  its four velocity. 

equation (10) gives 
Substitution of equation (11) into the coordinate identities (9) and also using 

pc rj v’ + (pc * Vj) ;i vi = -pc 2( &4). (12) 
Transvection with Vi gives 
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Consider a section of the world tube capped by two three-spaces V3 and Vi .  They are 
constructed so that they are normal to the limiting world line at the points P and P’. 
Integration of equation (13) throughout the world tube, converting the integral of the 
divergence to a surface integral leads to 

(cf Synge 1960, p 46). 
N’ is the normal to the three-spaces V3 and V;. There is no contribution to the left 

hand side of equation (14) from the sides of the world tube since these are parallel to V’. 
As the radius of the world tube shrinks to zero, the difference between NI and V’ 
becomes insignificant. (N’  cannot be assumed to be parallel to Vi  throughout the world 
tube, for that would imply a restriction on Vi.) Therefore, for an arbitrarily thin world 
tube 

pc2 d321 - jv3 pc2 d3v = lv4 pc2% VI d4v. 
4 

The integrals on the left are merely the energies of the test particle at the points P’ and 
P ,  respectively. Thus 

m c 2 ( P ’ ) - ~ ’ ( P ) =  pc 24.j - V j d 4 ~ .  k 4 
Now let the points P and P‘ be separated by a proper distance ds. The element of the 
four-volume sandwiched between V3 and V ;  may now be written as d3v ds where djv is 
the element of three-volume of V3 and equation (1 6) becomes 

d(mc’) = ds jv3 3v. 

Ignoring the small contribution to 4 from the test particle and the difference between V, 
and its world line value we have 

h vj 
4 

d( mc ’) = ds 

so that 

d 2  24j j -(mc )=mc - V ,  
ds 4 

or 

dm m c d 4  
ds 4 ds’ 
-=- _. 

Equation (19) immediately implies that 

Therefore it has been shown that conformal invariance requires the dependence of mass 
upon 4 assumed by Bramson. 
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This treatment of the equations of motion may be completed by substituting 
equation (13) into equation (12) and multiplying by m/p to obtain 

Using equation (18) this equation may be written as 

8 2 i  2 9” -(mc V ) = - m c  -. 
SS d 

5. Condusions 

We have extended here Bramson’s treatment of conformally invariant general relativ- 
ity. It has been shown that the relation between mass and the scalar field, m = mo4, is a 
necessary one in a general gauge. It has also been shown that this conformal invariance 
should be accompanied by a generalization of the equations of motion to equations 
(22). Note that in the gauge in which 4 is constant, particle masses are constant, the 
equations of motion are geodesics, stress energy is conserved and the field equations 
reduce to Einstein’s with a cosmological term which may or may not be zero. 

One may ask whether the role of the scalar field 4 as described here is to be the only 
role of a conformally invariant scalar field in general relativity. This matter will be dealt 
with in forthcoming publications. The work described in this paper also forms the 
starting point for conformally invariant generalizations of general relativity. This will 
also be considered in future papers. 
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